3INSAT - Train Integrated Safety Satellite System

Search form

The 3InSAT demonstration project will develop, test and validate in a real set up a new satellite-based platform suitable for a Train Control and Management System meeting the SIL4 safety requirements and compatible with the ERTMS standard. The requirements will be driven by the market needs and by the accreditation and certification strategy.

The 3InSat project has the objective to introduce a train monitoring and control system compliant with the state of the art European and international regulations adopting satellite based navigation and telecommunications systems. In such a way, the investments required along the rail tracks will be minimised, which will enable efficient and safety improved operations where today this cannot be sustained.

More specifically the objectives are:

  • On the positioning part, the 3InSat project is aimed at designing and developing a multi sensor Location Detection System (LDS) using multi constellation GNSS with the objective to guarantee the stringent safety requirements of SIL4
  • On the telecommunication part, 3InSat will select and implement an integrated solution based on the combination of SatCom and 3G/4G systems to realize a link between the on board train control system interfaces (e.g European Vital Computer EVC) and the ground based infrastructure (e.g the Radio Block Centre RBC)

 Furthermore 3InSat has the objective to validate these solutions  along a regional railways line in Sardinia on 1 test train.

Modern railway signalling systems play a major role in providing safety networks to prevent accidents due to human errors. Furthermore, railways traffic management improve the utilisation of scarce and expensive resources like the railways infrastructure. One of the major breakthroughs has been the introduction of an interoperable European standard known as European Rail Traffic Management System (ERTMS), which not only allows speed limits to be transmitted to the driver, but can also continuously monitor the driver's response to this information. An on-board computer effectively compares the speed of the train with the maximum permitted speed and automatically applies the train's braking, if the limit is exceeded. The existing implementation of the ERTMS requires significant investments in ground infrastructures (used for both positioning and telecommunication purposes), preventing its wider deployment.

So far, high speed lines and international freight transport lines have been the primary target for these systems, which are implemented using infrastructures deployed along the rail tracks (e.gbalises (electronic beacons), track circuits, cablings, GSM-R network) that are expensive to procure, install and maintain. Such highly expensive have so far prevented the adoption of advanced train traffic management systems in regional and remote railways lines, where traffic level is typically low. Both railways and train operators are interested in the introduction of advanced safety systems along this type of lines, which therefore represents today an untapped market.

A promising way to reduce the costs associated with the implementation and maintenance of ERMTS compatible solutions is to reduce the extent of deployment of the track side infrastructure using SatNav and SatCom to complement or replace the ground-based infrastructure.

3InSat is a project aiming at developing and validating a new satellite-based platform to be integrated into a  ERTMS system.  This satellite supported solution is not yet available on the market because of the very challenging safety requirements (Safety Integrity Level 4 SIL4 requirement) that a railway signalling system shall comply with. 
A validation campaign is planned on a specific Test Site to be carried out in Sardinia on a 50km line.

Users and their needs

The Italian railway infrastructure manager (RFI) and the German one (DB Netz) are reference users and partners of the project; they contribute to the user requirements definition, the tests and demonstration activities.
Other reference users are:

  • the Australian private mining company Roy Hill which is building a railway line to transport the minerals from the mines to the port and has already awarded a contract to Ansaldo STS. This project is the first in the world that has specified a satellite-based train control system with a SIL4 Localiser expected to become operational in 2014-15.
  • USA market users, where the bidding process for the Positive Train Control systems are expected to start in the next couple of years,
  • Russian RZD-NIIAS which is partner of Ansaldo STS in developing a satellite-based train control system.

The worldwide potential market for satellite-based train control systems is quite large. The demand is driven by different indicators: the growth of the core signalling market (+6% year), the government directive in the USA and to some extent in Russia, the new private players (the mining sector) and the need to modernise the old and low traffic lines in Europe.

An important market force is the need to deploy new lines in critical areas where the cost of maintenance of the railways is prohibitive (South Africa, Russia, Australia, Brazil). These needs can be fulfilled with the adoption of satellite technologies in order to reduce track-side circuitry and equipment to the largest possible extent.

Service/ system concept

The localisation service will be based on the provisioning of a safety service including the liability obligations versus the service level agreement. The signalling industry is used to design, develop and deliver solutions which have been certified according to the safety requirements. Since the Localiser is a key component of the train control system solution, the system integrator has to guarantee the customer for the whole operational life of the system. In this respect the system integrator is also the service provider to allow the operation of the localizer with its augmentation network in the specific railway corridor.

Concerning the telecommunication component of the train control systems, the system integrator has to procure the dedicated network fully optimised with its train control system. With the exception of some customers who procure and operate the telecommunication network by themselves, such a network is under the responsibility of the system integrator. In the case of satellite based systems the dominant part of the delivery becomes the service, which implies that a service provider should be selected. Such a service provider will have to manage the delivery of the train equipment and the relevant service according to a proper service level agreement. This type of services represents new business opportunities that cannot be explored by the space industry alone.

Space Added Value

The advent of satellite telecommunication network will inevitably shift the responsibility of the operation towards a service provider while the operation of the satellite localisation represents a new activity/service in the current value chain. Future service providers are expected to offer the localisation services with guaranteed quality of services and for different performance.

Compared to a traditional system, the life cycle cost (LCC) of a satellite-based train control system will be much lower. The market expectations for a LCC reduction are in the range of 20-40% including the costs of the new equipment and the relevant investments. Concerning the telecommunication component, the target LCC reduction compared to ground-based systems (assuming 10 years operations) is 30% to 60% including the amortisation of investments to customize and certify the terminals.

Product Benefits

3InSat solution will contribute to demonstrate how satellite can bring competitive advantage in terms of costs to  for the deployment of high safety standard (e.g. ERTMS) for local/regional lines and remote lines where is important to minimize the deployment of  the track-side equipment  and telecommunications infrastructures. This cost reduction shall anyhow assure high safety standard at the same level as conventional systems based on balises and ground deployed equipment . Additionally, it could increase the network capacity and efficiency, by implementing short  virtual blocks to reduce the train separation in the high traffic nodes.

3InSat project can facilitate the ERTMS evolution standardization process, demonstrating how satellite based positioning solution can be included in the future baselines.

The 3InSat project is strategic  to create a synergy between the rail and space technology to build-up a system centred on the ERTMS standard and able to bring to it the flexibility that GNSS and SatCom can guarantee.  Such potential enormous benefits will be transferred to the train operators and railways infrastructure managers and in general to the citizens.

For the railways industrial side the expected returns are mainly on the provisioning of a cheaper  ERTMS  train control system solution,  and for the satellite industry the delivery of new applications and services based on GNSS and SatCom .

In this respect  the key technologies are relevant to the SIL-4 localization systems and the satellite telecommunications which are expected to play a major role in the evolution of the train control systems. SatCom networks can provide interesting alternative solutions to complement/replace the GSM-R technology that will be phased out in the next years for the obsolescence of the technology and the imminent introduction of the IP based standards

Product Features

3InSat project will design, develop and validate specific solutions able to be employed for Safety of Life applications in the railway environment. Such solutions shall meet the mandatory safety requirement imposed in railways operations SIL4 (Safety Integrity Level 4). 

SIL-4 compliant localisation system shall be developed in accordance with the CENELEC norms and the tolerable hazard rate (THR) for train GNSS Location Determination System (LDS) shall be derived by means of the hazard analysis and risk assessment for ETCS Level 2 applications (through the reference of the ETCS Class 1 documents). This analysis will be reviewed by an assessor. 

The 3InSAT project will include the following  four main developments: 

1. The GNSS simulator to analyse achievable performance under different conditions (e.g. rail network topology, head-ends, confidence errors, environment). The overall architecture of the simulator is composed of the three main parts representing the whole GNSS-LDS System: 

a.  RS - Reference Stations;

b.  TALS - Track Area LDS Safety server; 

c.  OBU - On Board Unit. 

GNSS-LDS simulator can work either with real data or with simulated data. 

2. The LDS multi-sensors/multi-constellation (GPS, GLONASS, GALILEO, BEIDOU)  system which, through association of different SatNav receivers and on-board sensors (gyros, accelerometers, tachometer) will provide a SIL4 compliant positioning solution able to reach high integrity values and improve the overall availability and resiliency. The LDS will make use of Satellite Based Augmentation System SBAS (e.g. EGNOS for Europe) in combination with Ground Based Augmentation System GBAS for both differential corrections and integrity monitoring. Additionally the LDS will have independent integrity monitoring on-board capability to further mitigate GNSS errors and autonomously assess the GNSS location integrity in case of augmentation data unavailability (e.g. EGNOS SIS unavailability). 

3. Bearer-independent Telecommunication Network, which will combine mobile satellite services with terrestrial solution (3G/4G) to guarantee the necessary coverage and Quality of Service  in relation to the overall system requirements, and compatibility with the existing on board train control system interfaces. 

4. The Track Area Augmentation and Integrity Monitoring Network to be installed along the railways tracks. This element will be mainly used in regions out of the SBAS footprints 

As illustrated by the block diagram below the project adopts a modular architecture with the possibility to implement and deploy individual blocks according to the market evolution and SBAS Signal in Space coverage. 

The functions are distributed among the following elements: 

1) Space  segment (GPS, GALILEO, GLONASS  constellations + EGNOS + SATCOM) 

2) Augmentation and Integrity Monitoring  network 

3) On board unit (multi-constellation GNSS receiver + Multi-sensor  Localization Determination System (LDS) + Hybrid (satellite and terrestrial) telecommunication module) 

The primary task of the space segment is to provide the reference satellite signals needed for train position computation as well as to distribute real time corrections related to satellite ephemerides, clock offsets, propagation delays, and Signal In Space (SIS) integrity. 

The (Track Area) Augmentation and Integrity Monitoring Network plays a role similar to the EGNOS Range and Integrity Monitoring subsystem and, in fact, it will be deployed only on those areas out of EGNOS footprint. 

The on board unit  trough the Localization Determination System (LDS) subsystem computes the train position by using the GNSS signal, the augmentation information for integrity monitoring and the data from other sensors  as Inertial Navigation Systems (INS) and tachometers. The on board bearer-independent telecommunication subsystem will take care of ETCS messages and other important system information.

Fig. 1 Reference Architecture 

Key Issues

The main challenges of the project are related to the GNSS based LDS design and development because of the stringent SIL4 requirement.

The Track Area Augmentation and Integrity Monitoring Network represents another challenge since its performance in terms of availability will contribute to the fulfilment of the SIL4 requirement.

Last but not least, bearer-independent Telecommunication Network shall demonstrate a good trade-off between performances and costs which can guarantee a sustainable a competitive service of the 3InSat solution.

Current Status

System Deployment Acceptance (SDA) was successfully concluded for the terrestrial (Vodafone M2M) and the satellite (Inmarsat Broadband Global Area Network (BGAN)) telecommunications subsystems. 
Since April 8th until June 10th 2014, the Telecommunications Test Campaign (both terrestrial and satellite) has been running on the Cagliari-Olbia line in Sardinia. The EURORADIO over IP protocol has been successfully tested on both telecommunications solutions. 
The design activities concerning the dimensioning of the proprietary augmentation network are proceeding. Two passenger trains equipped with a prototype of the LDS ran along Pontremolese Line (Italy) with the objective of acquiring satellite data and fixed reference from the balises along the track. 
These two sets of data have been used to check the degree of overlap between the fixed reference (balises) and the GNSS positioning solution given by the LDS; this has allowed, through post processing activities via the developed simulator, to choose the best algorithms that will allow the LDS to be compliant with the requirements. 
The integrated SDA (LDS+TLC) is expected in Q4 2014. Preparatory activities for the Integrated Test Campaign are in progress. 
DB Netz has joined the project as new partner with an important role to review and amend the users requirements for the local and regional lines in Germany and assess the economical sustainability of the 3InSat technology for the German scenario. DB Netz and RFI will contribute to the analysis of the European scenario and to the identification of a roadmap for a standard solution.  

Prime Contractor

Leader Company Name: 
Ansaldo STS
Leader Company Country: 
Italy

Subcontractor

Company Name: 
Radiolabs
Company Country: 
Italy
Company Name: 
A.D Praha
Company Country: 
Czech Republic
Company Name: 
TriaGnoSys
Company Country: 
Germany
Company Name: 
Rete Ferroviaria Italiana
Company Country: 
Italy
Company Name: 
DLR
Company Country: 
Germany
Company Name: 
DB Netz
Company Country: 
Germany

Project Managers

Contractor Project Manager

Mouna Lekchiri
Via Paolo Mantovani 3-5
Genoa
16151
United Kingdom

ESA Project Manager

Michele Castorina
Keplerlaan 1
2201 AZ Noordwijk
Netherlands

Status Date

04 September 2014 - Created: 15 February 2014